Answer : The mass of of water present in the jar is, 298.79 g
Solution : Given,
Mass of barium nitrate = 27 g
The solubility of barium nitrate at [tex]20^oC[/tex] is 9.02 gram per 100 ml of water.
As, 9.02 gram of barium nitrate present in 100 ml of water
So, 27 gram of barium nitrate present in [tex]\frac{27g}{9.02g}\times 100ml=299.33ml[/tex] of water
The volume of water is 299.33 ml.
As we know that the density of water at [tex]20^oC[/tex] is 0.9982 g/ml
Now we have to calculate the mass of water.
[tex]\text{Mass of water}=\text{Density of water}\times \text{Volume of water}[/tex]
[tex]\text{Mass of water}=(0.9982g/ml)\times (299.33ml)=298.79g[/tex]
Therefore, the mass of of water present in the jar is, 298.79 g