Answer:y =0.07272727273 x + 2.587272727
Step-by-step explanation:
Equation of regression line is: y=ax +b
Where, [tex]b=\frac{\sum y\sum x^2-\sum x\sum xy}{n\sum x^2-(\sum x)^2}[/tex]
[tex]a=\frac{n(\sum xy)-\sum x\sum y}{n(\sum x^2)-(\sumx)^2}[/tex]
Here [tex]n =11,\sum y=32.46,\sum x^2=385,\sum x=55,\sum xy=170.3,(\sum x)^2=3025[/tex]
On substituting the values in the formula above for a and b we get:
[tex]b=\frac{32.46\cdot 385-55\cdot 170.3}{11(385)-3025}[/tex]
On simplification we get: [tex]b=2.587[/tex]
[tex]a=\frac{11(170.3)-55\cdot 32.46}{11(385)-3025}[/tex]
On simplification we get: [tex]a=0.0727[/tex]