Respuesta :

Greetings!

Answer:

B and E

Step-by-step explanation:

The rules of indicies states:

[tex]x^{a}[/tex] ÷[tex]x^{b}[/tex] = [tex]x^{a-b}[/tex]

So [tex]3^{-8}[/tex] ÷  [tex]3^{-4}[/tex] =  [tex]3^{-8 - - 4}[/tex] =  [tex]3^{-4}[/tex]

So that means B is one of the correct answers.

To find the other correct value, you can divide the two fractions as stated in the question:

[tex]3^{-8}[/tex] by [tex]3^{-4}[/tex] = [tex]\frac{1}{81}[/tex]

81 is equivalent to 3⁴

So that means E is also correct.


Hope this helps!


gmany

[tex]\text{Use}\\\\\dfrac{a^n}{a^m}=a^{n-m}\\\\a^{-n}=\dfrac{1}{a^n}\\-----------------------\\\\\dfrac{3^{-8}}{3^{-4}}=3^{-8-(-4)}=3^{-8+4}=\underbrace{\boxed{3^{-4}}}_{\boxed{B.}}=\underbrace{\boxed{\dfrac{1}{3^4}}}_{\boxed{E.}}\\\\Answer:\ \boxed{B.\ and\ E.}[/tex]