Respuesta :
Answer:-1/(a^2 -3a)
Solution :
-3/15a × 5/a-3
= -3/3a × 1/a-3
=-1/a × 1/a-3
=-1/a(a-3)
=-1/(a^2 -3a)
Solution :
-3/15a × 5/a-3
= -3/3a × 1/a-3
=-1/a × 1/a-3
=-1/a(a-3)
=-1/(a^2 -3a)
For this case we must find the following product:
[tex]\frac {a-3} {15a} * \frac {5} {a-3} = \frac {5 (a-3)} {15a (a-3)}[/tex]
We know that [tex]\frac {(a-3)} {(a-3)} = 1[/tex]
So:
[tex]\frac {5 (a-3)} {15a (a-3)} = \frac {5} {15a}[/tex]
Dividing the numerator and denominator by "5":
[tex]\frac {5} {15a} = \frac {1} {3a}[/tex]
Thus, the product is[tex]\frac {1} {3a}[/tex]
Answer:
[tex]\frac {1} {3a}[/tex]