Respuesta :

Answer:

[tex]n=241[/tex]

Step-by-step explanation:

We are given

[tex]5x^2+nx+48[/tex]

Let's assume it can be factored as

[tex]5x^2+nx+48=(5x-s)(x-r)[/tex]

now, we can multiply right side

and then we can compare it

[tex]5x^2+nx+48=5x^2-5rx-sx+rs[/tex]

[tex]5x^2+nx+48=5x^2-(5r+s)x+rs[/tex]

now, we can compare coefficients

[tex]rs=48[/tex]

[tex]5r+s=-n[/tex]

[tex]n=-(5r+s)[/tex]

now, we can find all possible factors of 48

and then we can assume possible prime factors of 48

[tex]48=-+(1\times 48)[/tex]

[tex]48=-+(2\times 24)[/tex]

[tex]48=-+(3\times 16)[/tex]

[tex]48=-+(4\times 12)[/tex]

[tex]48=-+(6\times 8)[/tex]

Since, we have to find the largest value of n

So, we will get consider larger value of r because of 5r

and because n is negative of 5r+s

so, we will both n and r as negative

So, we can assume

r=-48 and s=-1

so, we get

[tex]n=-(5\times -48-1)[/tex]

[tex]n=241[/tex]