Answer:
In the figure below :
d = 2.08, e = 5, c = 5.42 , a = 22.78°, b = 67.22°
Step-by-step explanation:
Side lengths :
[tex]2\cdot e=10\\ \Rightarrow e=5 feet\\\frac{d}{e}=\frac{5}{12}\\\Rightarrow d=\frac{25}{12}\approx 2.08 feet[/tex]
By pythagoras theorem,
[tex]c^2=d^2+e^2\\c^2=29.33\\c\approx 5.42 feet[/tex]
Now to find angles,
[tex]a+b+90^{\circ}=180^{\circ}\\\Rightarrow a+b=90^{\circ}\\\tan a=\frac{d}{e}\\\Rightarrow \tan a =0.42\\\Rightarrow a=22.78^{\circ}\\\Rightarrow b=67.22^{\circ}[/tex]