Respuesta :

Answer:

4, 2, 1, [tex]\frac{1}{2}[/tex], [tex]\frac{1}{4}[/tex], .....

Step-by-step explanation:

Fifth term (a₅) =  [tex]\frac{1}{4}[/tex]

Common ratio (r) = [tex]\frac{1}{2}[/tex]

n = 5

The formula to find the [tex]n^{th}[/tex] term of a geometric sequence is

a₅ = a₁r⁽ⁿ⁻¹⁾

=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{2})^{(5-1)}[/tex]

=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{2})^{(4)}[/tex]

=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{2})*(\frac{1}{2})*(\frac{1}{2})*(\frac{1}{2})[/tex]

=> [tex]\frac{1}{4}[/tex] = a₁* [tex]\frac{1*1*1*1}{2*2*2*2}[/tex]

=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{16})[/tex]

Flip the sides of the equation

a₁*[tex](\frac{1}{16})[/tex] = [tex]\frac{1}{4}[/tex]

Multiply both sides by 16

a₁*[tex](\frac{1}{16})[/tex]*16 = [tex]\frac{1}{4}[/tex]*16

Cancelling out the 16's from the top and bottom of the left side

a₁ = [tex]\frac{16}{4}[/tex]

=> a₁ = 4

So, first term of the geometric sequence is 4.

Common ratio = [tex]\frac{1}{2}[/tex]

Second term = First term * Common ratio

                      = 4* [tex]\frac{1}{2}[/tex]

                      = [tex]\frac{4}{2}[/tex]

                      = 2

Third term = Second Term * Common ratio

                  = 2 * [tex]\frac{1}{2}[/tex]

                  = [tex]\frac{2}{2}[/tex]

                  = 1

Fourth term = Third Term * Common ratio

                    = 1 * [tex]\frac{1}{2}[/tex]

                    = [tex]\frac{1}{2}[/tex]

Fifth term (given) = [tex]\frac{1}{4}[/tex]

So, the geometric sequence would be

4, 2, 1, [tex]\frac{1}{2}[/tex], [tex]\frac{1}{4}[/tex], .....