Respuesta :
Answer:
4, 2, 1, [tex]\frac{1}{2}[/tex], [tex]\frac{1}{4}[/tex], .....
Step-by-step explanation:
Fifth term (a₅) = [tex]\frac{1}{4}[/tex]
Common ratio (r) = [tex]\frac{1}{2}[/tex]
n = 5
The formula to find the [tex]n^{th}[/tex] term of a geometric sequence is
a₅ = a₁r⁽ⁿ⁻¹⁾
=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{2})^{(5-1)}[/tex]
=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{2})^{(4)}[/tex]
=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{2})*(\frac{1}{2})*(\frac{1}{2})*(\frac{1}{2})[/tex]
=> [tex]\frac{1}{4}[/tex] = a₁* [tex]\frac{1*1*1*1}{2*2*2*2}[/tex]
=> [tex]\frac{1}{4}[/tex] = a₁*[tex](\frac{1}{16})[/tex]
Flip the sides of the equation
a₁*[tex](\frac{1}{16})[/tex] = [tex]\frac{1}{4}[/tex]
Multiply both sides by 16
a₁*[tex](\frac{1}{16})[/tex]*16 = [tex]\frac{1}{4}[/tex]*16
Cancelling out the 16's from the top and bottom of the left side
a₁ = [tex]\frac{16}{4}[/tex]
=> a₁ = 4
So, first term of the geometric sequence is 4.
Common ratio = [tex]\frac{1}{2}[/tex]
Second term = First term * Common ratio
= 4* [tex]\frac{1}{2}[/tex]
= [tex]\frac{4}{2}[/tex]
= 2
Third term = Second Term * Common ratio
= 2 * [tex]\frac{1}{2}[/tex]
= [tex]\frac{2}{2}[/tex]
= 1
Fourth term = Third Term * Common ratio
= 1 * [tex]\frac{1}{2}[/tex]
= [tex]\frac{1}{2}[/tex]
Fifth term (given) = [tex]\frac{1}{4}[/tex]
So, the geometric sequence would be
4, 2, 1, [tex]\frac{1}{2}[/tex], [tex]\frac{1}{4}[/tex], .....