Respuesta :

Solution:

[tex]f(x) = x^{10}-8x^8-8x^3+12x^2-5x-5[/tex]

We have to find the remainder when f(x) is divided by [tex]x^2-1.[/tex]

x²-1=0

x=[tex]\pm1[/tex]

[tex]f(1)=1^{10}-8(1)^8-8(1)^3+12(1)^2-5(1)-5=1-8-8+12-5-5=1-16+12-10=13-26=-13\\\\f(-1)=(-1)^{10}-8(-1)^8-8(-1)^3+12(-1)^2-5(-1)-5=1-8+8+12+5-5=1+12=13[/tex]

So, remainder is 13 and -13.

Answer:

-13x + 10

Step-by-step explanation:

We have the polynomial [tex]f(x) = x^{10}-8x^{8}-8x^{3}+12x^{2}-5x+5[/tex].

It is required to find the remainder when f(x) is divided by [tex]g(x)=x^{2}-1[/tex].

Using the division algorithm, we get there exists polynomials q(x) and r(x) such that f(x) = g(x) q(x) + r(x), where q(x) is the quotient and r(x) is the remainder with 0 < degree of r(x) < degree of g(x) = 2.

This gives r(x) = ax + b, where a and b are integers.

Now, [tex]f(x) = (x-1) \times (x+1) \times q(x)[/tex]

So, f(1) = r(1) and f(-1) = r(-1)


i.e. -3 = a+b and 23 = -a+b


On solving we get, a = -13 and b = 10.


So, r(x) = -13x + 10.


Hence the remainder without using long division is -13x+10.