Respuesta :

frika

Answer:

See proof below

Step-by-step explanation:

Consider triangle with midpoints D, E, F of the sides BC, AC and AB, respectively.  If D, E and F are midpoints  of the sides BC, AC and AB, then

  • EA=CE;
  • DC=DB;
  • FA=BF.

Triangle ABC is equilateral triangle, then

  • m∠ABC=m∠ACB=m∠BAC=60°;
  • AB=BC=AC.

If AB=BC=AC, then EA=CE=FA=BF=DC=DB.

By SAS theorem, ΔFAE≅ΔDCE≅ΔEBD.

Congruent triangles have congruent corresponding sides, then

EF=FD=DE. This means that triangle DEF is equilateral.

Ver imagen frika