Answer:
Simplify: [tex](\sin(x) -\cos(x))^2[/tex]
Use identity rule:
[tex](a-b)^2 = a^2+b^2-2ab[/tex]
Using this rule:
[tex]\sin^2(x)+\cos^2(x)-2\sin(x)\cos(x)[/tex]
Using trigonometric identities rules:
then;
Apply the trigonometric identity rule:
[tex]1-2\sin(x)\cos(x)[/tex]
or
[tex]1-\sin 2(x)[/tex]
Therefore, the simplified form of [tex](\sin(x) -\cos(x))^2[/tex] is [tex]1-\sin 2(x)[/tex]