What is the approximate volume of the oblique cone? Use TTX =3.14 and round to the nearest tenth.

Answer:
The volume of given oblique cone is 235.5 cubic units.
Step-by-step explanation:
Volume of oblique cone is same as volume of cone
Consider a cone with 'r' as radius and 'h' height then volume is given as,
Volume of cone =[tex]\frac{1}{3} \pi r^2h[/tex]
Given : Oblique cone with radius 5 units and height 9 units.
We have to find the volume of cone.
Volume of cone =[tex]\frac{1}{3} \pi r^2h[/tex]
Put given values in above,
Volume of oblique cone =[tex]\frac{1}{3} \pi (5)^2 \times 9[/tex]
Volume of oblique cone =[tex]\frac{1}{3} \times 3.14 \times 25 \times 9[/tex]
Volume of oblique cone =[tex] 3.14 \times 25 \times 3[/tex]
Volume of oblique cone =[tex] 3.14 \times 75[/tex]
Volume of oblique cone =[tex] 235.5[/tex]
Thus, the volume of given oblique cone is 235.5 cubic units.