Respuesta :

Answer:

Formula for the Arc length is given by:

[tex]\text{Arc length} = 2 \pi r \cdot \frac{\theta}{360^{\circ}}[/tex]

As per the statement:

radius of circle(r) = 6 units

Angle ([tex]\theta[/tex]) = [tex]\frac{7 \pi}{8}[/tex] radian

Use conversion:

[tex]1 rad = \frac{180}{\pi}[/tex]

[tex]\frac{7 \pi}{8}[/tex] = [tex]\frac{180}{\pi} \cdot \frac{7 \pi}{8} = \frac{1260}{8} = 157.5^{\circ}[/tex]

then;

substitute these given values we have;

Use value of [tex]\pi = 3.14[/tex]

[tex]\text{Arc length} = 2\cdot 3.14 \cdot (6) \cdot \frac{157.5^{\circ}}{360^{\circ}}[/tex]

or

[tex]\text{Arc length} = 2\cdot 3.14 \cdot (6) \cdot 0.4375[/tex]

Simplify:

[tex]\text{Arc length}=16.485[/tex]

Therefore, the arc length of the arc substended in a circle with radius 6 units an angle of 7 pi/8 is 16.485 units