What is the length of radius to the nearest tenth of an inch?

Answer:
radius = arc length / central angle in radians
radius = 4 inches / 5*PI / 12
radius = 4 / 1.308996939 radians
radius = 3.0557749074
radius = 3.0557749074 inches
Step-by-step explanation:
Answer:
3.1 in
Step-by-step explanation:
In any circle the following ratios are equal
[tex]\frac{arc}{circumference}[/tex] = [tex]\frac{angleatcentre}{2\pi }[/tex]
[tex]\frac{4}{2r\pi }[/tex] = [tex]\frac{\frac{5\pi }{12} }{2\pi }[/tex]
[tex]\frac{4}{2r\pi }[/tex] = [tex]\frac{5}{24}[/tex] ( cross- multiply )
10πr = 96 ( divide both sides by 10π )
r = [tex]\frac{96}{10\pi }[/tex] = 3.1 in ( nearest tenth )