Respuesta :

the second one. take a right angled triangle and Mark one of the angles as theeta. then take sides as 3,4,5 and put it in options only one of them will satisfy

Answer:

[tex]\tan^2\theta +1 = \sec^2\theta[/tex]

True

Option 2 is correct

Step-by-step explanation:

Given:

We need to choose correct option of Pythagorean identity.

Trigonometry formula:

[tex]\tan\theta=\dfrac{P}{B}=\dfrac{1}{\cot\theta}[/tex]

[tex]\sin\theta=\dfrac{P}{H}=\dfrac{1}{\csc\theta}[/tex]

[tex]\cos\theta=\dfrac{B}{H}=\dfrac{1}{\sec\theta}[/tex]

Option 1:

[tex]\sin^2\theta + 1 = \cos^2\theta[/tex]

[tex]\dfrac{P^2}{H^2}+1=\dfrac{B^2}{H^2}[/tex]

[tex]P^2+H^2\neq B^2[/tex]

False

Option 2:

[tex]\tan^2\theta +1 = \sec^2\theta[/tex]

[tex]\dfrac{P^2}{B^2}+1=\dfrac{H^2}{B^2}[/tex]

[tex]\dfrac{H^2}{B^2}=\dfrac{H^2}{B^2}[/tex]        [tex]\because B^2+P^2=H^2[/tex]

True

Option 3:

[tex]1-\cot^2\theta=\csc^2\theta[/tex]

[tex]1-\dfrac{B^2}{P^2}+1=\dfrac{H^2}{P^2}[/tex]

[tex]P^2-B^2\neq H^2[/tex]

False

Option 4:

[tex]1-\cos^2\theta=\tan^2\theta[/tex]

[tex]1-\dfrac{B^2}{H^2}+1=\dfrac{P^2}{B^2}[/tex]

[tex]\dfrac{H^2-B^2}{H^2}\neq \dfrac{P^2}{B^2}[/tex]

False