Answer:
The function to represent this relationship will be: [tex]y= \frac{15}{x}[/tex]
Step-by-step explanation:
[tex]y[/tex] varies inversely with [tex]x[/tex]. That means......
[tex]y= \frac{k}{x}..............................(1)[/tex]
where [tex]k[/tex] is a proportional constant.
Given that, when [tex]x=3[/tex], then [tex]y=5[/tex]
Plugging these values into the above equation, we will get.....
[tex]5=\frac{k}{3}\\ \\ 5(3)=\frac{k}{3}(3)\\ \\ 15=k[/tex]
Now plugging this [tex]k=15[/tex] into equation (1).....
[tex]y= \frac{15}{x}[/tex]
So, the function to represent this relationship will be: [tex]y= \frac{15}{x}[/tex]