What is the value of x?
Enter your answer in the box.
units

AP and CD are parallel. Therefore the segments AC, CR, DR and PD are in proportion:
[tex]\dfrac{CR}{DR}=\dfrac{AC}{PD}[/tex]
We have
CR = x
DR = 42
AC = 10
PD = 15
Substitute:
[tex]\dfrac{x}{42}=\dfrac{10}{15}[/tex] cross multiply
[tex]15x=(42)(10)[/tex]
[tex]15x=420[/tex] divide both sides by 15
[tex]x=\dfrac{420}{15}[/tex]
[tex]\boxed{x=28}[/tex]
Answer:
x = 28
Step-by-step explanation:
We have similar triangles so
RC RD
----------- = -------------
RA RP
Substituting in
x 42
----------- = -------------
x+10 42+15
x 42
----------- = -------------
x+10 57
Using cross products
57*x = 42(x+10)
Distribute
57x = 42x+420
Subtract 42 from each side
57x-42x = 42x-42x+420
15x = 420
Divide by 15
15x/15 = 420/15
x = 28