Analyze the asymptotes of the function.

Which of the following options are the equations of the function’s asymptotes? Select all that apply.

x = -1
x = 1
y = -1
y = 1
x = 0
y = 0

Analyze the asymptotes of the function Which of the following options are the equations of the functions asymptotes Select all that apply x 1 x 1 y 1 y 1 x 0 y class=

Respuesta :

Answer:

vertical asymptote at x=-1

horizontal asymptote at y=0

Step-by-step explanation:

[tex]y=\frac{1}{x+1}[/tex]

To find vertical asymptote we set the denominator =0 and solve for x

x+1=0 (subtract 1 from both sides)

x=-1

So, vertical asymptote at x=-1

To find horizontal asymptote we look at  the degree of both numerator and denominator

there is no variable at the numerator , so degree of numerator =0

degree of denominator =1

When the degree of numerator is less than the degree of denominator

then horizontal asymptote at y=0