In the parallelogram below, x=?

Answer:
The [tex]\angle x^{\circ} =\angle 88^{\circ}[/tex]
Step-by-step explanation:
we need to find out the [tex]\angle x^{\circ}[/tex] in the provided figure
so, first we need to find out the [tex]\angle z^{\circ}[/tex]
since , [tex]\angle z=69^{\circ}[/tex]
Since, sum of interior angles of triangle is 180
[tex]\angle 69^{\circ} +\angle 23^{\circ}+ \angle x^{\circ} =180^{\circ}[/tex]
[tex]\angle 92^{\circ} + \angle x^{\circ} =180^{\circ}[/tex]
subtract both the sides by [tex]\angle 92^{\circ}[/tex]
[tex]\angle x^{\circ} =180^{\circ}-\angle 92^{\circ}[/tex]
[tex]\angle x^{\circ} =\angle 88^{\circ}[/tex]
Therefore, the [tex]\angle x^{\circ} =\angle 88^{\circ}[/tex]