Respuesta :

Answer:

Given the inequality: [tex]8n+4< 28[/tex]  

Subtract 4 from both sides we have;

[tex]8n< 24[/tex]

Divide 8 to both sides we have;

[tex]n < 3[/tex]

The solution set for this inequality is: [tex](-\infty, 3)[/tex]

Let any 3 values from this solution sets:

n = 2

then;

[tex]8(2)+4< 28[/tex]  

[tex]16+4<24[/tex]

[tex]20<24[/tex]       true

Similarly for:

n = 1

[tex]8(1)+4< 28[/tex]  

[tex]8+4<24[/tex]

[tex]12<24[/tex]       true

For n =0

[tex]8(0)+4< 28[/tex]  

[tex]0+4<24[/tex]

[tex]4<24[/tex]       true

Therefore, the 3 values that would make this inequality true  [tex]8n+4< 28[/tex]   is, {0, 1, 2}