Answer:
[tex]x=7[/tex] or [tex]x=-5/2[/tex]
Step-by-step explanation:
The given equation in standard form can be written as
[tex]2x^{2} -9x-35=0[/tex]
comparing with the standard equation [tex]ax^{2} +bx+c=0[/tex] ,
we observe that
[tex]a=2[/tex] , [tex]b=-9[/tex] , [tex]c=-35[/tex]
putting the values of a, b and c in the quardatic formula
x=(-b±[tex]\sqrt{b^{2}-4ac }[/tex])÷2a
x=(-(-9)±[tex]\sqrt{(-9)^{2}-4(2)(-35) }[/tex])÷2(2)
x=(9±[tex]\sqrt{81+280}[/tex])÷4
x=(9±[tex]\sqrt{361}[/tex])÷4
x=(9±19)÷4
x=(9+19)÷4 or x=(9-19)÷4
x=28÷4 or x=-10÷4
x=7 or x=-5÷2