Respuesta :

Answer:

[tex](x+\frac{3}{4})(x+\frac{3}{4})=0[/tex]

Step-by-step explanation:

We are given the quadratic equation [tex]16x^{2}+24x+9=0[/tex]

Now, the roots of the quadratic equation [tex]ax^{2}+bx+c=0[/tex] are given by [tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex].

So, from the given equation, we have,

a = 16, b =24 , c = 9.

Substituting the values in [tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex], we get,

[tex]x=\frac{-24\pm \sqrt{(24)^{2}-4\times 16\times 9}}{2\times 16}[/tex]

i.e. [tex]x=\frac{-24\pm \sqrt{576-576}}{32}[/tex]

i.e. [tex]x=\frac{-24\pm \sqrt{0}}{32}[/tex]

i.e. [tex]x=\frac{-24}{32}[/tex]

i.e. [tex]x=\frac{-3}{4}[/tex]

Thus, the roots of the equation are [tex]\frac{-3}{4}[/tex]  and [tex]\frac{-3}{4}[/tex].

Hence, the factored form of the given expression will be [tex](x+\frac{3}{4})(x+\frac{3}{4})=0[/tex]