Answer:
Step-by-step explanation:
From the figure, AB=c=9.65, AC=b=8.87 and BC=a
Now, [tex](AB)^{2}=(BC)^{2}+(AC)^{2}[/tex]
[tex]c^{2}=a^{2}+b^{2}[/tex]
[tex]a^{2}=c^{2}-b^{2}[/tex]
[tex]a=\sqrt{c^{2}-b^{2}}[/tex]
[tex]a=\sqrt{(9.65)^{2}-(8.87)^{2}}[/tex]
[tex]a=3.80[/tex]
Therefore, BC=3.80
Now, SinA=[tex]\frac{BC}{AB}=\frac{a}{c}=\frac{3.80}{9.65}=0.39[/tex]
CosA=[tex]\frac{AC}{AB}=\frac{b}{c}=\frac{8.87}{9.65}=0.91[/tex]
SinB=[tex]\frac{AC}{AB}=\frac{b}{c}=\frac{8.87}{9.65}=0.91[/tex]
CosB=[tex]\frac{BC}{AB}=\frac{a}{c}=\frac{3.80}{9.65}=0.39[/tex]