Respuesta :
Mechanical energy of the ball will remain conserved
so here we have
[tex]E = mgh + \frac{1}{2}mv^2[/tex]
[tex]E = 0.200(9.8)(2) + 0[/tex]
[tex]E = 3.92 J[/tex]
so mechanical energy will remain same at all positions
Now when ball comes to position of 1 m height then potential energy is given as
[tex]U = mgh[/tex]
[tex]U = (0.200kg)(9.8 m/s^2)(1 m)[/tex]
[tex]U = 1.96 J[/tex]
Now since total mechanical energy is conserved so we will say
[tex]KE + U = E[/tex]
[tex]KE + 1.96 = 3.92 [/tex]
[tex]KE = 1.96 J[/tex]
so we have
its mechanical energy = 3.92 J
its potential energy = 1.96 J
its kinetic energy = 1.96 J
Answer:
its mechanical energy = 3.92 J
its potential energy = 1.96 J
its kinetic energy = 1.96 J
Explanation: