Respuesta :
Answer: 9.4
Step-by-step explanation:
Here the x-coordinates and y-coordinates have the inverse relation.
⇒ [tex]x\propto\frac{1}{y}[/tex]
⇒ [tex]x=\frac{k}{y}[/tex]
Where k is variation constant.
Since, point (9.4, 11) is from the inverse variation,
Therefore, this point must be satisfy the above condition,
That is, [tex]9.4=\frac{k}{11}[/tex]
[tex]k=103.4[/tex]
Thus, the relation between the coordinates is,
[tex]x=\frac{103.4}{y}[/tex]
Put x = 11, in the above function,
[tex]11=\frac{103.4}{y}[/tex]
[tex]y=\frac{103.4}{11}=9.4[/tex]
Answer:
0.94
Explanation:
We know that the given values (9.4,11) and (11,y) are from an inverse variation.
So we can write the function of an inverse variation as:
[tex] y [/tex] ∝ [tex] \frac{1} {x} [/tex]
[tex] y = \frac {k} {x} [/tex]
Finding the constant [tex] k [/tex]:
[tex] 11 = \frac {k}{9.4} [/tex]
[tex] k = 9.4*11 [/tex]
[tex] k = 10.34 [/tex]
Now finding the missing value [tex] y [/tex]:
[tex] y = \frac {10.34}{11} [/tex]
[tex]y = 0.94[/tex]
Therefore, the missing value is (11, 0.94).