Which is the equation of a hyperbola centered at the origin with vertex (0,sqrt12) that passes through (2sqrt3,6)

A. y^2/36-x^2/12=1
B. y^2/12-x^2/36=1
C. y^2/6-x^2/12=1
D. y^2/12-x^2/6=1

Respuesta :

Answer:

D.

[tex]\frac{y^2}{12}-\frac{x^2}{6}=1[/tex]

Step-by-step explanation:

we are given

we can use standard equation of hyperbola

[tex]\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1[/tex]

where

center=(h,k)

center at origin

so, h=0 and k=0

vertex is

[tex](0,\sqrt{12})[/tex]

we can use formula

vertices: (h, k + a)

we get

[tex]k+a=\sqrt{12}[/tex]

we can plug k=0

[tex]a=\sqrt{12}[/tex]

now, we can plug these values

[tex]\frac{(y-0)^2}{(\sqrt{12})^2}-\frac{(x-0)^2}{b^2}=1[/tex]

now, we are given it passes through [tex](2\sqrt{3} ,6)[/tex]

so, we have

[tex]x=2\sqrt{3},y=6[/tex]

we can plug these values and then we can solve for b

[tex]\frac{(6-0)^2}{(\sqrt{12})^2}-\frac{(2\sqrt{3}-0)^2}{b^2}=1[/tex]

and we get

[tex]36b^2-144=12b^2[/tex]

we can solve for b

and we get

[tex]b=\sqrt{6}[/tex]

now, we can plug these values

[tex]\frac{(y-0)^2}{(\sqrt{12})^2}-\frac{(x-0)^2}{(\sqrt{6})^2}=1[/tex]

we can simplify it

and we get

[tex]\frac{y^2}{12}-\frac{x^2}{6}=1[/tex]

Answer:

D.

\frac{y^2}{12}-\frac{x^2}{6}=1