Find p[b] in each case: (a) events a and b are a partition and p[a] = 3p[b]. (b) for events a and b, p[a ∪ b] = p[a] and p[a ∩ b] = 0. (c) for events a and b, p[a ∪ b] = p[a]− p[b].

Respuesta :

Answer:

Case(a): [tex]p[b]=\frac{1}{3}p[a][/tex]

Case(b): [tex]p[b]=0[/tex]

Case(c):  [tex]p[b]=\frac{1}{2}p[a\cap b][/tex]

Step-by-step explanation:

Given

(a) events a and b are a partition and p[a] = 3p[b].

(b) for events a and b, p[a ∪ b] = p[a] and p[a ∩ b] = 0.

(c) for events a and b, p[a ∪ b] = p[a]− p[b].

we have to find the p[b] in each case:

Case (a): events a and b are a partition and p[a] = 3p[b].

gives [tex]p[b]=\frac{1}{3}p[a][/tex]

Case (b):  for events a and b, p[a ∪ b] = p[a] and p[a ∩ b] = 0.

[tex]p[a\cup b]=p[a][/tex] ⇒[tex]p[a]+p[b]-p[a\cap b]=p(a)[/tex] ⇒ [tex]p[b]=0[/tex]  ∵  p[a ∩ b] = 0.

Case(3):  for events a and b, p[a ∪ b] = p[a]− p[b].

p[a ∪ b] = p[a]− p[b]

⇒ [tex]p[a]+p[b]-p[a\cap b]=p[a]-p[b][/tex]

⇒ [tex]2p[b]=p[a\cap b][/tex]

⇒  [tex]p[b]=\frac{1}{2}p[a\cap b][/tex]

Answer:

(a) [tex]p[b]=\frac{1}{3}\times p[a][/tex].

(b) p[b]=0

(c) [tex]p[b]=\frac{1}{2}\times p[a\cap b][/tex]

Step-by-step explanation:

(a)

[tex]p[a]=3p[b][/tex]

Divide both sides by 3.

[tex]\frac{1}{3}\times p[a]=p[b][/tex]

Therefore [tex]p[b]=\frac{1}{3}\times p[a][/tex].

(b)

[tex]p[a\cup b]=p[a][/tex]

[tex]p[a]+p[b]-p[a\cap b]=p[a][/tex]         [tex][\because P(A\cup B)=P(A)+P(B)-P(A\cap B)][/tex]

[tex]p[a]+p[b]-0=p[a][/tex]                         [tex][\because p[a\cap b]=0][/tex]

[tex]p[b]=p[a]-p[a][/tex]

[tex]p[b]=0[/tex]

Therefore [tex]p[b]=0[/tex].

(c)

[tex]p[a\cup b]=p[a]-p[b][/tex]

[tex]p[a]+p[b]-p[a\cap b]=p[a]-p[b][/tex]   [tex][\because P(A\cup B)=P(A)+P(B)-P(A\cap B)][/tex]

[tex]p[b]-p[a\cap b]+p[b]=0[/tex]

[tex]2p[b]=p[a\cap b][/tex]

[tex]p[b]=\frac{1}{2}\times p[a\cap b][/tex]

Therefore [tex]p[b]=\frac{1}{2}\times p[a\cap b][/tex].