Answer:
Option b) [tex]x=(-3\pm \sqrt{5})[/tex].
Step-by-step explanation:
We have to solve the equation x²+6x+4 =0 for the value of x.
As we know from any quadratic equation ax²+bx+c=0
the value of [tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]
Now with the help of this formula we will solve the equation
x²+6x+4 = 0
By putting the values of a= 1, b=6, c=4 in the formula
[tex]x=\frac{-6\pm \sqrt{6^{2}-4\times 1\times 4}}{2\times 1}[/tex]
[tex]x=\frac{-6\pm \sqrt{36-16}}{2}[/tex]
[tex]x=\frac{-6\pm \sqrt{20}}{2}[/tex]
[tex]x=\frac{-6\pm \sqrt{4\times 5}}{2}[/tex]
[tex]x=\frac{-6\pm 2\sqrt{5}}{2}[/tex]
[tex]x=\frac{2(-3\pm \sqrt{5})}{2}[/tex]
[tex]x=-3\pm \sqrt{5}[/tex]
so the final answer is [tex]x=(-3\pm \sqrt{5})[/tex]