Respuesta :

Answer:

[tex](\frac{f}{g})(x)=\frac{1}{3}(x^2+3x+9)[/tex]

Step-by-step explanation:

We have been given that

[tex]f(x)=x^3-27,g(x)=3x-9[/tex]

We can use the formula for difference of cubes to simplify the function f(x)

difference of cubes -  [tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

[tex]f(x)=x^3-27\\\\=x^3-3^3\\\\=(x-3)(x^2+3x+9)[/tex]

And g(x) can be written as

[tex]g(x)=3x-9\\=3(x-3)[/tex]

Thus, we have

[tex](\frac{f}{g})(x)=\frac{(x-3)(x^2+3x+9)}{3(x-3}[/tex]

On cancelling the common factors, we get

[tex](\frac{f}{g})(x)=\frac{1}{3}(x^2+3x+9)[/tex]

Answer:

Step-by-step explanation: