Which BEST describes the system of equations? y = 4x + 3 y = 2x − 4 A) Consistent B) Inconsistent C) Consistent and Dependent D) Consistent and Independent

Respuesta :

Answer:

D) Consistent and Independent

Step-by-step explanation:

The system of equations,

[tex]a_{1} x+b_{1} y+c_{1} =0[/tex] and

[tex]a_{2} x+b_{2} y+c_{2} =0[/tex]

is consistent and independent if [tex]\frac{a_{1} }{a_{2}} \neq \frac{b_{1} }{b_{2}}[/tex]

The system is consistent and dependent if [tex]\frac{a_{1} }{a_{2}} =\frac{b_{1} }{b_{2}} =\frac{c_{1} }{c_{2}}[/tex]

The system is inconsistent if [tex]\frac{a_{1} }{a_{2}} =\frac{b_{1} }{b_{2}} \neq \frac{c_{1} }{c_{2}}[/tex]

Now, in the given system

4x - y + 3 = 0 and

2x - y - 4 = 0

[tex]\frac{a_{1} }{a_{2}} =\frac{4}{2} =2[/tex]

[tex]\frac{b_{1} }{b_{2}} =\frac{-1}{-1} =1[/tex]

So, [tex]\frac{a_{1} }{a_{2}}\neq \frac{b_{1} }{b_{2}}[/tex]

Hence, the given system is consistent and independent.