Respuesta :

Answer:

              Common difference(d)                  [tex]a_{52}[/tex]

(21)                   -10                                          -548

(22)                   -7                                          -323

(23)                    10                                           547

(24)                   -100                                       -5118

Step-by-step explanation:

Let the common difference be denoted by 'd'.

Also the nth difference of an arithmetic sequence is given by: [tex]a_{n}=a_{1}+(n-1)\times d[/tex]

(21)

We are given a recursive formula as:

[tex]a_{n}=a_{n-1}-10[/tex]

The first term is given by:

[tex]a_{1}=-38[/tex]

The common difference for an arithmetic sequence is given by:

[tex]a_{n}-a_{n-1}[/tex]

Hence, here we have the common difference as:

[tex]d=-10[/tex]

The nth term of an arithmetic sequence is given by:

[tex]a_{n}=a_{1}+(n-1)\times d[/tex]

Here [tex]a_{1}=-38[/tex] and [tex]d=-10[/tex].

Hence, [tex]a_{52}=-38+(52-1)\times (-10)[/tex]

Hence, [tex]a_{52}=-548[/tex]

(22)

[tex]a_{n}=a_{n-1}-7[/tex]

[tex]a_{1}=34[/tex]

The common difference for an arithmetic sequence is given by:

[tex]a_{n}-a_{n-1}[/tex]

Hence, here we have the common difference as:

[tex]d=-7[/tex]

Here [tex]a_{1}=34[/tex] and [tex]d=-7[/tex].

Hence, [tex]a_{52}=34+(52-1)\times (-7)[/tex]

Hence, [tex]a_{52}=-323[/tex]

(23)

[tex]a_{n}=a_{n-1}+10[/tex]

[tex]a_{1}=37[/tex]

The common difference for an arithmetic sequence is given by:

[tex]a_{n}-a_{n-1}[/tex]

Hence, here we have the common difference as:

[tex]d=10[/tex]

Here [tex]a_{1}=37[/tex] and [tex]d=10[/tex].

Hence, [tex]a_{52}=37+(52-1)\times (10)[/tex]

Hence, [tex]a_{52}=547[/tex]

(24)

[tex]a_{n}=a_{n-1}-100[/tex]

[tex]a_{1}=-18[/tex]

The common difference for an arithmetic sequence is given by:

[tex]a_{n}-a_{n-1}[/tex]

Hence, here we have the common difference as:

[tex]d=-100[/tex]

Here [tex]a_{1}=-18[/tex] and [tex]d=-100[/tex].

Hence, [tex]a_{52}=-18+(52-1)\times (-100)[/tex]

Hence, [tex]a_{52}=-5118[/tex]