Find the sum of the G.P,16^2+17^2+18^2+...+25^2

Answer:
hello :
note : 1²+2²+3²+........+n² = n(n+1)(n+2)/6
Step-by-step explanation:
let : S = 1²+2²+3²+......+25²
A = 16²+17²+18²+...+25²
B = 1²+2²+3²+......+15²
S = (1²+2²+3²+....+15²) + (16²+17²+18²+...+25²)
calculate : S for : n = 25
S = 25(26)(27)/6 = 2925
calculate : B for : n = 15
B = 15(16)(17)/6 = 680
so : S = B + A
A = S - B = 2925 - 680 = 2245
Answer: 4285
Step-by-step explanation:
[tex]\sum^{25}_{16}i^2=\sum^{25}_{0}i^2-\sum^{15}_{0}i^2\\\\\text{Use the summation formula:}\ \dfrac{n}{6}(n+1)(2n+1)\\\\\sum^{25}_{0}i^2 = \dfrac{25}{6}(25+1)[2(25)+1]\\\\\\.\qquad=\dfrac{25(26)(51)}{6}\\\\.\qquad=5525\\\\\\\sum^{15}_{0}i^2 = \dfrac{15}{6}(15+1)[2(15)+1]\\\\\\.\qquad=\dfrac{15(16)(31)}{6}\\\\.\qquad=1240\\\\\\\sum^{25}_{0}i^2-\sum^{15}_{0}i^2\\\\=5525-1240\\\\=4285[/tex]