Find the vertex, zero(s), and y-intercept of the graph of y = –x2 + 4x + 32.



A. Vertex: (2,36); zeros: (–4,0), (8,0) y-intercept: (0,32)
B. Vertex: (36,2); zeros: (–4,0), (8,0) y-intercept: (32,0)
C. Vertex: (2,3); zeros: (–4,0), (8,0) y-intercept: (0,16)
D. Vertex: (2,36); zeros: (–8,0), (4,0) y-intercept: (0,32)


Respuesta :

Answer:

The correct option is A.

Step-by-step explanation:

The given equation is

[tex]y=-x^2+4x+32[/tex]

Put x=0, in the given equation.

[tex]y=-(0)^2+4(0)+32=32[/tex]

The y-intercept is (0,32).

Put y=0, to find the x-intercept.

[tex]0=-x^2+4x+32[/tex]

[tex]0=-x^2+8x-4x+32[/tex]

[tex]0=-x(x-8)-4(x-8)[/tex]

[tex]0=-(x+4)(x-8)[/tex]

[tex]x=-4,8[/tex]

Therefore the y-intercepts are (-4,0) and (8,0).

The vertex of a parabola [tex]f(x)=ax^2+bx+c[/tex] is

[tex](-\frac{b}{2a},f(-\frac{b}{2a}))[/tex]

[tex]-\frac{b}{2a}=-\frac{4}{2(-1)}=2[/tex]

Put x=2 in the given function.

[tex]y=-(2)^2+4(2)+32[/tex]

[tex]y=-4+8+32[/tex]

[tex]y=36[/tex]

The vertex is (2,36).

Therefore option A is correct.

Ver imagen DelcieRiveria

Answer:

Option (a) is correct.

Vertex: (2,36); zeros: (–4,0), (8,0) y-intercept: (0,32)

Step-by-step explanation:

Consider the given equation [tex]y=-x^2+4x+32[/tex]

We have to find vertex, zero(s), and y-intercept.

First we find the vertex, For The general form of a quadratic is [tex]y=ax^2+bx+c[/tex]

the coordinate of the vertex (h, k)  is given as [tex]h=\frac{-b}{2a}[/tex] and

[tex]k=\frac{4ac-b^2}{4a}[/tex]

Here, a= -1 , b= 4 and  c = 32

[tex]h=\frac{-b}{2a}=\frac{-4}{-2}=2[/tex] and,

[tex]k=\frac{4ac-b^2}{4a}=\frac{-128-16}{-4}=36[/tex]

Thus vertex of [tex]y=-x^2+4x+32[/tex]  is ( 2, 36)

Now, we find the zeros,

Put y = 0, we get,

[tex]y=-x^2+4x+32=0[/tex]

This is a quadratic equation of the form [tex]ax^2+bx+c=0[/tex]

Hence, we can find zero using middle term splitting method,

4x can be written as 8x - 4x

Thus, [tex]-x^2+4x+32=0[/tex]

[tex]\Rightarrow -x^2+8x-4x+32=0[/tex]

[tex]\Rightarrow x(-x+8)+4(-x+8)=0[/tex]

[tex]\Rightarrow (-x+8)(x+4)=0[/tex]

[tex]\Rightarrow (-x+8)=0[/tex] or [tex]\Rightarrow (x+4)=0[/tex]

[tex]\Rightarrow x=8[/tex] or [tex]\Rightarrow x=-4[/tex]

Thus, zeros are (-4,0) and (8,0) .

Now to calculate y intercept put x = 0 in [tex]y=-x^2+4x+32[/tex]

We get , y= 32.

The same can be seen through graph as below.

Thus, option (a) is correct.


Ver imagen athleticregina