Answer:
[tex]\frac{36x^{5}y^{8}z^{10}}{15x^{5}y^{7}z^{2}}[/tex] = [tex]\frac{12}{5} yz^{8}[/tex]
Step-by-step explanation:
Given expression is:
[tex]\frac{36x^{5}y^{8}z^{10}}{15x^{5}y^{7}z^{2}}[/tex]
Let us divide the numberator and the denominator by the common factor 3[tex]x^{5}[/tex].
[tex]\frac{36x^{5}y^{8}z^{10}}{15x^{5}y^{7}z^{2}}[/tex] = [tex]\frac{12y^{8}z^{10}}{5y^{7}z^{2}}[/tex]
[tex]= \frac{12y^{7}(y)z^{2}(z^{8} )}{5y^{7}z^{2}}[/tex]
Cancel out the common factor [tex]y^{7} z^{2}[/tex] on the numerator and the denominator, we get,
[tex]\frac{36x^{5}y^{8}z^{10}}{15x^{5}y^{7}z^{2}}[/tex] = [tex]\frac{12}{5} yz^{8}[/tex]