A statement Sn about the positive integers is given. Write statements S1, S2, and S3, and show that each of these statements is true. Show your work. Sn: 2 + 5 + 8 + . . . + ( 3n - 1) = n(1 + 3n)/2

Respuesta :

Answer:

S1: 2

S2:7

S3: 15

Step-by-step explanation:

Sn: 2 + 5 + 8 + . . . + ( 3n - 1) = n(1 + 3n)/2

S1: Put n = 1

     [tex]= \frac{n (1 + 3n)}{2} \\= \frac{1 (1 + 3(1))}{2}\\= \frac{1 (1 + 3)}{2}\\= \frac{1(4)}{2}\\= \frac{4}{2}\\= 2[/tex]

S2: Put n = 2

[tex]= \frac{n (1 + 3n)}{2}\\= \frac{2 (1 + 3(2))}{2}\\= \frac{2 (1 + 6)}{2}\\= \frac{2 (7)}{2}\\= \frac{14}{2}\\= 7[/tex]

S3: Put n = 3

\frac{n (1 + 3n)}{2}\\= \frac{3 (1 + 3(3))}{2}\\= \frac{3 (1 + 9)}{2}\\= \frac{3 (10)}{2}\\= \frac{30}{2}\\= 15[/tex]


How these are true:

S1: 2

S2: 2+ 5 = 7 (Sum of first two terms

S3: 2+5+8 = 15 (Sum of first three terms)