Answer:
[tex]\boxed{301865\:feet}[/tex]
Step-by-step explanation:
Let the distance be [tex]d[/tex] and the time be [tex]t[/tex].
It was given that the distance, [tex]d[/tex], varies directly as the square of the time [tex]t[/tex], we write the proportional relation,
[tex]d\propto t^2[/tex].
[tex]\Rightarrow d=k t^2[/tex], where [tex]k[/tex] is the constant of variation.
It was also given that, [tex]d=193,193[/tex], when [tex]t=44[/tex].
[tex]\Rightarrow 193193=k (44^2)[/tex]
[tex]\Rightarrow 193193=1936k [/tex]
[tex]\Rightarrow \frac{193193}{1936}=k [/tex]
[tex]\Rightarrow k=99.79 [/tex]
Now the equation of variation becomes;
[tex]d=99.79t^2[/tex]
When, [tex]t=55s[/tex], [tex]d=99.79(55^2)[/tex]
[tex]\Rightarrow d=99.79(3025)[/tex]
[tex]d=301864.75[/tex]
The object will travel 301865 feet in 55 seconds.