Respuesta :

gmany

If a, b and c are a Pythagorean triple, then:

[tex]a^2+b^2=c^2[/tex]

for a ≤ b < c.

We have:

A) 11, 60, 61

check:

[tex]11^2+60^2=121+3600=3721\\\\61^2=3721[/tex]

CORRECT

B) 6, 8, 15

These are not the sides of the triangle because 6 + 8 = 14 < 15

C) 5, 11, 12

check

[tex]5^2+11^2=25+121=146\\\\12^2=144\\\\146\neq144[/tex]

INCORRECT

D) 9, 24, 25

[tex]9^2+24^2=81+576=657\\\\25^2=625\\\\657\neq625[/tex]

INCORRECT

Answer: A) 11, 60, 61

2)

If a, b, c are the sides of the triangle, then:

a + b > c and a + c > b and b + c > a.

We have 14, 48, x. Therefore:

x < 14 + 48

x < 62

and

x + 14 > 48

x > 34

therefore 34 < x < 62

If 34 < x < 48, then:

[tex]14^2+x^2=48^2[/tex]

[tex]196+x^2=2304[/tex]      subtract 196 from both sides

[tex]x^2=2108\to x=\sqrt{2108}\\\\x=\sqrt{4\cdot527}\\\\x=\sqrt4\cdot\sqrt{527}\\\\\boxed{x=2\sqrt{527}}[/tex]

If 48 < x < 62, then:

[tex]x^2=14^2+48^2[/tex]

[tex]x^2=196+2304[/tex]

[tex]x^2=2500\to x=\sqrt{2500}\\\\\boxed{x=50}[/tex]

Answer: D) 50