Respuesta :

Answer:

The sum of the x-coordinates of all solutions is -2

Step-by-step explanation:

We are given system of equations as

[tex]7x^2+3y^2=187[/tex]

[tex]3y^2-7x=47[/tex]

Firstly, we will isolate x

[tex]7x=3y^2-47[/tex]

[tex]x=\frac{3y^2-47}{7}[/tex]

now, we can plug back in first equation

[tex]7(\frac{3y^2-47}{7})^2+3y^2=187[/tex]

now, we can solve for y

[tex]\frac{9y^4}{7}-\frac{261y^2}{7}+\frac{2209}{7}=187[/tex]

[tex]\frac{9y^4}{7}-\frac{261y^2}{7}+\frac{2209}{7}-187=0[/tex]

[tex](y^2-25)(y^2-4)=0[/tex]

[tex]y=-5,y=5,y=-2,y=2[/tex]

now, we can find x-values

At y=-5:

[tex]x=\frac{3(-5)^2-47}{7}[/tex]

[tex]x=4[/tex]

At y=5:

[tex]x=\frac{3(5)^2-47}{7}[/tex]

[tex]x=4[/tex]

At y=-2:

[tex]x=\frac{3(-2)^2-47}{7}[/tex]

[tex]x=-5[/tex]

At y=2:

[tex]x=\frac{3(2)^2-47}{7}[/tex]

[tex]x=-5[/tex]

now, we can add all x-coordinate solution values

[tex]=4+4-5-5[/tex]

[tex]=-2[/tex]

So,

the sum of the x-coordinates of all solutions is -2