Respuesta :
[tex]P_1(x_1;\ y_1);\ P_2(x_2;\ y_2)\\\\|P_1P_2|=d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}[/tex]
Answer:
[tex]\left|P_1P_2\right|=d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Let the coordinates of the given point are as follows,
[tex]P_1=(x_1,y_1)\:\:and\:\:P_2=(x_2,y_2)[/tex]
Now The distance between point [tex]P_1\:\:andP_2[/tex] is given by,
[tex]\left|P_1P_2\right|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Therefore, [tex]\left|P_1P_2\right|=d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]