Answer : The number of molecules inside the cell is, [tex]8.08\times 10^6[/tex]
Solution :
First we have to calculate the volume of biomolecule cell.
Volume = Area of the base of the cell × length of the cell
[tex]V=\pi r^2\times h[/tex]
where,
V = volume of the biomolecule cell
r = radius of the cell = [tex]\frac{Diameter}{2}=\frac{1.2}{2}=0.6\mu m[/tex]
h = length of the cell = [tex]4.4\mu m[/tex]
Now put all the given values in the above volume formula, we get
[tex]V=\frac{22}{7}\times (0.6\mu m)^2\times (4.4\mu m)=4.978\mu m^3=4.978\times 10^{-15}L[/tex]
conversion : [tex](1\mu m^3=10^{-15}L)[/tex]
Now we have to calculate the moles of a biomolecule of the cell.
[tex]Molarity=\frac{Moles}{Volume}\\\\Moles=Molarity\times Volume=(0.0027mole/L)\times (4.976\times 10^{-15}L)=0.01343\times 10^{-15}moles[/tex]
Now we have to calculate the number of molecules inside the cell.
[tex]\text{Number of molecules}=Moles\times (6.022\times 10^{23})\\\\\text{Number of molecules}=(0.01343\times 10^{-15})\times (6.022\times 10^{23})=8.08\times 10^6[/tex]
Therefore, the number of molecules inside the cell is, [tex]8.08\times 10^6[/tex]