Simplify the expression fraction with numerator of the square root of negative four and denominator of the quantity three plus i minus the quantity two plus three times i. HINT: Simplify the denominator first. Then use the conjugate of the denominator to rationalize the fraction

Respuesta :

Answer:

[tex]\frac{-4+2i}{5}[/tex]

Step-by-step explanation:

We are given the expression, [tex]\frac{\sqrt{-4}}{(3+i)-(2+3i)}[/tex]

On simplifying, we have,

[tex]\frac{2i}{3+i-2-3i}[/tex]

i.e. [tex]\frac{2i}{1-2i}[/tex]

Now, we will rationalize the expression,

i.e. [tex]\frac{2i}{1-2i}\times \frac{1+2i}{1+2i}[/tex]

i.e. [tex]\frac{(2i)\times (1+2i)}{(1-2i)\times (1+2i)}[/tex]

i.e. [tex]\frac{2i+4i^{2}}{1-4i^{2}}[/tex]

Since, [tex]i^{2}=-1[/tex], we get,

i.e. [tex]\frac{2i-4}{1+4}[/tex]

i.e. [tex]\frac{-4+2i}{5}[/tex]

So, the simplified expression is  [tex]\frac{-4+2i}{5}[/tex].