Respuesta :

Answer:

[tex]\frac{1}{4-7i}=\frac{4}{65}+\frac{7}{65}i[/tex]

Step-by-step explanation:

we are given

[tex]\frac{1}{4-7i}[/tex]

Firstly, we will get rid of imaginary term from denominator

so, we will multiply conjugate to both top and bottom term

[tex]\frac{1}{4-7i}=\frac{1\times (4+7i)}{(4-7i)\times (4+7i)}[/tex]

[tex]\frac{1}{4-7i}=\frac{4+7i}{4^2-(7i)^2}[/tex]

[tex]\frac{1}{4-7i}=\frac{4+7i}{16+49}[/tex]

[tex]\frac{1}{4-7i}=\frac{4+7i}{65}[/tex]

we can also write as

so, we get

[tex]\frac{1}{4-7i}=\frac{4}{65}+\frac{7}{65}i[/tex]