Respuesta :
Answer:
B
Step-by-step explanation:
The distance formula is [tex]D=\sqrt{(y_2-y_1)^{2}+(x_2-x_1)^{2}}[/tex]
Where [tex](x_1,y_1)[/tex] is the first coordinate (our case, point A(2,2)) & [tex](x_2,y_2)[/tex] is the second coordinate (our case, point D(-4,-3))
Plugging these in into the formula gives us:
[tex]D=\sqrt{(y_2-y_1)^{2}+(x_2-x_1)^{2}} \\D=\sqrt{(-3-2)^{2}+(-4-2))^{2}} \\D=\sqrt{(-5)^{2}+(-6)^{2}}\\ D=\sqrt{25+36} \\D=\sqrt{61} \\D=7.81[/tex]
Answer choice B is closest.
Answer:
B) 7.8 units
Step-by-step explanation:
To find the distance between 2 points
d = sqrt ( (x2-x1)^2 + (y2-y1)^2)
=sqrt( -4-2)^2 + (-3-2)^2)
= sqrt((-6)^2+(-5)^2)
= sqrt(36+26)
= sqrt(61)
=7.810249676