Respuesta :

Answer:

Ques 16)

We have to simplify the expression:

[tex]\dfrac{t^2}{t^2+3t-18}-(\dfrac{5t}{t^2+3t-18}-\dfrac{t-3}{t^2+3t-18})\\   \\=\dfrac{t^2}{t^2+3t-18}-(\dfrac{4t+3}{t^2+3t-18})\\  \\=\dfrac{t^2-4t-3}{t^2+3t+18}[/tex]

Ques 17)

[tex]\dfrac{3w^2+7w-7}{w^2+8w+15}+\dfrac{2w^2-9w+4}{(2w^2+9w-5)(w^2-w-12)}\\  \\=\dfrac{3w^2+7w-7}{w^2+8w+15}+\dfrac{(2w-1)(w-4)}{(2w-1)(w+5)(w+3)(w-4)}\\\\=\dfrac{3w^2+7w-7}{(w+3)(w+5)}+\dfrac{1}{(w+3)(w+5)}\\\\=\dfrac{3w^2+7w-7+1}{(w+3)(w+5)}\\\\=\dfrac{(3w-2)(w+3)}{(w+5)(w+3)}\\\\=\dfrac{3w-2}{w+5}[/tex]

Ques 18)

Let the blank space be denoted by the quantity 'x'.

[tex]\dfrac{x}{12a^2+8a}+\dfrac{15a^2}{12a^2+8a}=\dfrac{7a}{3a+2}\\ \\\dfrac{x+15a^2}{12a^2+8a}=\dfrac{7a}{3a+2}\\\\=\dfrac{x+15a^2}{4a(3a+2)}=\dfrac{7a}{3a+2}\\\\=\dfrac{x+15a^2}{4a}=7a\\\\x+15a^2=28a^2\\\\x=28a^2-15a^2\\\\x=13a^2[/tex]

Ques 19)

Let the missing quantity be denoted by 'x'.

[tex]\dfrac{p^2+7p+2}{p^2+5p-14}-\dfrac{x}{p^2+5p-14}=\dfrac{p-1}{p-2}\\ \\\dfrac{p^2+7p+2-x}{p^2+5p-14}=\dfrac{p-1}{p-2}\\\\\dfrac{p^2+7p+2-x}{(p-2)(p+7)}=\dfrac{p-1}{p-2}\\\\p^2+7p+2-x=(p-1)(p+7)\\\\p^2+7p+2-x=p^2+6p-7\\\\x=p+9[/tex]


Otras preguntas