Respuesta :
The ODE is separable:
[tex]3y\,\mathrm dx+(xy+5x)\,\mathrm dy=0\implies x(y+5)\,\mathrm dy=-3y\,\mathrm dx\implies\dfrac{y+5}y\mathrm dy=-\dfrac3x\,\mathrm dx[/tex]
Integrating both sides gives
[tex]\displaystyle\int\left(1+\frac5y\right)\,\mathrm dy=-3\int\frac{\mathrm dx}x\implies y+5\ln|y|=-3\ln|x|+C[/tex]
Answer:
-3㏑x+C=y+5㏑y
Step-by-step explanation:
Given differential equation is separable,
3ydx +(xy+5x)dy= 0
3ydx=-(xy+5x)dy
taking x as common,
3ydx=-(y+5)xdy
-3/xdx=(y+5)/ydy
-3/xdx=(1+5/y)dy
integrating both sides of equation,
∫-3/xdx=∫(1+5/y)dy
-3㏑x+C=y+5㏑y which is the solution of given ordinary differential equation.C is the constant of integration.