Let f(x)=2x^2+x-3 and g(x)=x-1. Perform the indicated operation, then find the domain. (F/g)(x)

A. 1/2x+3; domain: all real numbers expect x=-3/2

B. 2x+3;domain: all real numbers

C. 2x^2+3; domain all real numbers

D. 2x+3; domain: all real numbers expect x=1

Respuesta :

Answer:

The correct option is D.

Step-by-step explanation:

The given functions are

[tex]f(x)=2x^2+x-3[/tex]

[tex]g(x)=x-1[/tex]

Both functions are polynomial and the domain of any polynomial is the set of all real numbers.

[tex](\frac{f}{g})x=\frac{f(x)}{g(x)}=\frac{2x^2+x-3}{x-1}[/tex]

[tex](\frac{f}{g})x=\frac{2x^2+3x-2x-3}{x-1}[/tex]

[tex](\frac{f}{g})x=\frac{x(2x+3)-1(2x+3)}{x-1}[/tex]

[tex](\frac{f}{g})x=\frac{(2x+3)(x-1)}{x-1}[/tex]

[tex](\frac{f}{g})x=2x+3[/tex]

The domain of [tex](\frac{f}{g})x[/tex] is all real number except x=1, because at x=1, g(x)=0.

Therefore option D is correct.