Answer:
x can be cancelled
Step-by-step explanation:
we are given
[tex]\frac{4x^3-10x^2+6x}{2x^3+x^2-3x}[/tex]
Firstly, we will factor numerator and denominator
and then we can factor it
[tex]4x^3-10x^2+6x=2x(2x^2-5x+3)[/tex]
[tex]4x^3-10x^2+6x=2x(2x+1)(x-3)[/tex]
now, we can factor denominator
[tex]2x^3+x^2-3x=x(2x^2+x-3)[/tex]
[tex]2x^3+x^2-3x=x(x-1)(2x+3)[/tex]
now, we can replace it
[tex]\frac{4x^3-10x^2+6x}{2x^3+x^2-3x}=\frac{2x(2x+1)(x-3)}{x(x-1)(2x+3)}[/tex]
we can see that
both terms are having x common
so, x can be cancelled
So,
x can be cancelled