Answer:
Okapi 290 kg
Llama 160 kg
Step-by-step explanation:
Let weight of each llama be [tex]l[/tex]
Let weight of each okapi be [tex]o[/tex]
Given, combined weight of 1 okapi and 1 llama is 450, we can write:
[tex]l+o=450[/tex]
Also, average weight of 3 llama is 190 more than the average weight of 1 okapi, thus we can write:
[tex]3l-190=o[/tex]
Now, substituting 2nd equation into 1st equation, we can solve for weight of 1 llama:
[tex]l+o=450\\l+(3l-190)=450\\l+3l-190=450\\4l=450+190\\4l=640\\l=\frac{640}{4}=160[/tex]
Each llama weights 160 kg, now using this and plugging into 2nd equation, we get weight of 1 okapi to be:
[tex]o=3l-190\\o=3(160)-190\\o=290[/tex]
Each okapi weigh 290 kg