Respuesta :

Answer:

Given the expression: [tex]\sin^{-1}(\cos(\frac{\pi}{2}))[/tex]

Let the value of the given expression in radians be [tex]\theta[/tex]

then;

[tex]\sin^{-1}(\cos(\frac{\pi}{2})) =\theta[/tex]

[tex]\cos \frac{\pi}{2} = \sin \theta[/tex]              ......[1]

We know the value of [tex]\cos \frac{\pi}{2} = 0[/tex]

Substitute the given value in [1] we have;

[tex]\sin \theta = 0[/tex]

Since, the value of [tex]\sin \theta[/tex] is 0, therefore, the value of [tex]\theta[/tex] is in the form of:

[tex]\theta = n\pi[/tex] ; where n is the integer.

At n =0, 1 and 2, {Since, n is the integer}

Value of  [tex]\theta =0, \pi[/tex] and [tex]2\pi[/tex]

therefore, the answer in radians either   [tex] 0 , \pi[/tex] or [tex]2\pi[/tex]


Answer:

[A]  0

Step-by-step explanation:

Use the following identity:  cos(x) = sin( [tex]\frac{\pi }{2}[/tex] - x)

arcsin(cos([tex]\frac{\pi }{2}[/tex])) = arcsin(sin([tex]\frac{\pi }{2}[/tex] - [tex]\frac{\pi }{2}[/tex]))

= arcsin(sin([tex]\frac{\pi }{2} - \frac{\pi }{2}[/tex]))

Simplify:

arcsin(sin(0)) = 0

Hope this helps!