Respuesta :

Answer:

Option D. [tex]8,40,41[/tex]

Step-by-step explanation:

we know that

A "Pythagorean Triple" is a set of positive integers, a, b and c that fits the Pythagorean Theorem

[tex]c^{2}=a^{2}+b^{2}[/tex]

where

c is the greater length side

Verify each case

Case A) [tex]3,4,5[/tex]

[tex]5^{2}=3^{2}+4^{2}[/tex]

[tex]25=25[/tex] -----> Is true

therefore

the set of integers is a Pythagorean Triple

Case B) [tex]6,8,10[/tex]

[tex]10^{2}=6^{2}+8^{2}[/tex]

[tex]100=100[/tex] -----> Is true

therefore

the set of integers is a Pythagorean Triple

Case C) [tex]5,12,13[/tex]

[tex]13^{2}=5^{2}+12^{2}[/tex]

[tex]169=169[/tex] -----> Is true

therefore

the set of integers is a Pythagorean Triple

Case D) [tex]8,40,41[/tex]

[tex]41^{2}=8^{2}+40^{2}[/tex]

[tex]1,681=1,664[/tex] -----> Is not true

therefore

the set of integers is not a Pythagorean Triple

Answer: D) 8,40,41

Step-by-step explanation: