Respuesta :
Answer:
vertex = (- 2, - 36)
Step-by-step explanation:
Given a parabola in standard form : y = ax² + bx + c : a ≠ 0
Then the x- coordinate of the vertex is
[tex]x_{vertex}[/tex] = - [tex]\frac{b}{2a}[/tex]
f(x) = 5x² + 20x - 16 is in standard form
with a = 5, b = 20 and c = - 16
[tex]x_{vertex}[/tex] = - [tex]\frac{20}{10}[/tex] = - 2
Substitute x = - 2 into f(x) for corresponding y- coordinate
f(- 2) = 5(- 2)² +20(- 2) - 16 = 20 - 40 - 16 = - 36
vertex = (- 2, - 36)
Answer:
(-2,-16)
Step-by-step explanation:
Given is a function
[tex]f(x) =5x^2+20x-16[/tex]
To find its vertex
We can use completion of squares method
[tex]f(x) =5x^2+20x-16[/tex]
[tex]f(x)=5(x^2+4x)-16\\=5(x^2+4x+4)-20-16\\=5(x+2)^2-16[/tex]
This is in std vertex form of a parabola
From the equation we find that the vertex is
(-2,-16)
Hence vertex is (-2,-16)
Verify:
Derivative of f(x) =f'(x)=10x+20
Equate to 0 to have x=-2
f(-2) = 20-40-16=-36
Thus verified